2007 Vol. 9, No. 17 3245-3248

Stereoselective Synthesis of 1,2-Aminoalcohols by [2,3]-Wittig Rearrangements

Marion Barbazanges, Christophe Meyer,* and Janine Cossy

Laboratoire de Chimie Organique, ESPCI, CNRS, 10 rue Vauquelin 75231 Paris Cedex 05, France

christophe.meyer@espci.fr

Received May 18, 2007

ABSTRACT

[2,3]-Wittig rearrangements of (E)-3-aza-allylic alcohol derivatives can provide access to functionalized 1,2-aminoalcohols with high syn or anti diastereoselectivity depending on the anionic stabilizing group (amide or alkyne).

1,2-Aminoalcohols are encountered in a large number of natural products and/or biologically active compounds.¹ Moreover, optically enriched 1,2-aminoalcohols are often used as building blocks for the preparation of chiral catalysts used in a variety of enantioselective processes.² Numerous strategies have been developed to synthesize 1,2-aminoalcohols. Among the different possible routes, those that involve formation of the σ bond between the two heterosubstituted carbons, with control of their configuration, essentially rely on the addition of α -amino or α -alkoxy carbon nucleophiles to carbonyl compounds or imines.^{3,4} Alternatively, reductive coupling reactions between C=N and C=O bonds can also be carried out.⁵ The preparation of α -alkoxy- β -aminoesters has also been described from α -alkoxy- γ , δ -unsaturated esters that can be obtained by a

[3,3]-glycolate Claisen rearrangement. In this latter approach,

oxidative cleavage of the double bond to the corresponding

acid and subsequent Schmidt reaction were used to introduce

the amino substituent.⁶ However, to our knowledge, there

are no examples of direct formation of the σ bond between

the two heterosubstituted carbons in 1,2-aminoalcohols that

relies on sigmatropic rearrangements. Herein, we report our

results on the [2,3]-Wittig rearrangement of derivatives of

(3) For selected references, see: (a) Ramasastry, S. S. V.; Zhang, H.;
Tanaka, F.; Barbas, C. F., III J. Am. Chem. Soc. 2007, 129, 288–289. (b)
Trost, B. M.; Jaratjaroonphong, J.; Reutrakul, V. J. Am. Chem. Soc. 2006, 128, 2778–2779. (c) Carswell, E. L.; Snapper, M. L.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2006, 45, 7230–7233. (d) Enders, D.; Grondal, C.; Vrettou, M.; Raabe, G. Angew. Chem., Int. Ed. 2005, 44, 4079–4083. (e)
Matsunaga, S.; Yoshida, T.; Morimoto, H.; Kumagai, N.; Shibasaki, M. J. Am. Chem. Soc. 2004, 126, 8777–8785. (f) List, B.; Pojarliev, P.; Biller,

W. T.; Martin, H. J. J. Am. Chem. Soc. 2002, 124, 827–833. (4) (a) Lombardo, M.; Mosconi, E.; Pasi, F.; Petrini, M.; Trombini, C. J. Org. Chem. 2007, 72, 1834–1837. (b) Keinicke, L.; Fristrup, P.; Norrby, P.-O.; Madsen, R. J. Am. Chem. Soc. 2005, 127, 15756–15761. (c) Reetz, M. T. Chem. Rev. 1999, 99, 1121–1162. (d) Bloch, R. Chem. Rev. 1998, 98, 1407–1438 and references cited in these articles.

⁽⁵⁾ Zhong, Y.-W.; Dong, Y.-Z.; Fang, K.; Izumi, K.; Xu, M.-H.; Lin, G.-Q. *J. Am. Chem. Soc.* **2005**, *127*, 11956–11957 and references cited therein.

⁽⁶⁾ Jung, D. Y.; Kang, S.; Chang, S.; Kim, Y. H. Synlett 2006, 86-90.

^{(1) (}a) Lee, H.-S.; Kang, S. H. Synlett **2004**, 1673–1685. (b) Bergmeier, S. C. Tetrahedron **2000**, 56, 2561–2576. (c) Ager, D. J.; Prakash, I.; Schaad, D. R. Chem. Rev. **1996**, 96, 835–875. (d) Cardillo, G.; Tomasini, C. Chem. Soc. Rev. **1996**, 117–128. (e) Cole, D. C. Tetrahedron **1994**, 50, 9517–9582

^{(2) (}a) Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; *Comprehensive Asymmetric Catalysis*, 1st ed.; Springer: Berlin, 1999. (b) Fache, F.; Schulz, E.; Tommasino, M. L.; Lemaire, M. *Chem. Rev.* **2000**, *100*, 2159–2232.

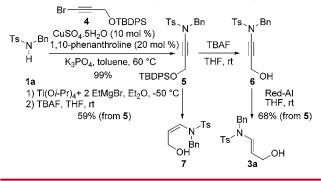
acyclic 3-aza-substituted allylic alcohols as a diastereoselective route to 1,2-aminoalcohols.

With the goal of synthesizing α -hydroxy- β -amino- γ , δ -unsaturated carbonyl derivatives of type **A**, in which the double bond and the carbonyl group could undergo several transformations and hence give access to a variety of functionalized 1,2-aminoalcohols, it was envisaged to carry out the [2,3]-Wittig rearrangement of enamine derivatives of type **B**. The latter compounds would be synthesized from the 3-aza-allylic alcohols of type **C**. Although there has been one previous report dealing with [2,3]-Wittig rearrangements of substrates bearing an enol ether moiety, 8 related reactions have apparently not been studied with enamine derivatives. As compounds of type **B** contain an enamine moiety and a potential allylic alkoxy leaving group, the nitrogen atom was substituted by an electron-withdrawing tosyl substituent (R' = Ts) to obtain stable enamide derivatives (Scheme 1).

Scheme 1. Synthesis of α -Hydroxy- β -aminocarbonyl Compounds by [2,3]-Wittig Rearrangement

A straightforward route toward allylic alcohols of type **C** starts with the conjugate addition of sulfonamides $\mathbf{1a-f}$ to methyl propiolate in the presence of *N*-methylmorpholine (NMM) (MeCN, 0 °C). The corresponding β -aminoacrylates were obtained as a mixture of geometric isomers with acceptable stereoselectivity in most cases $[(E)/(Z) \ge 80:20]$ except when R is a *p*-anisyl group [(E)/(Z) = 70:30]. After separation by flash chromatography, the major (E)- β -aminoacrylates $\mathbf{2a-f}$ were isolated in good yields (55-91%) and were reduced (DIBAL-H, CH_2Cl_2 , -78 °C) to the corresponding (E)-allylic alcohols $\mathbf{3a-f}$ (84-99%) without alteration of the stereoisomeric purity (Table 1).

Though this access to 3-aza-allylic alcohols of type C was convenient, a stereoselective route to both geometric isomers of the latter compounds has also been secured. The coppercatalyzed coupling between sulfonamide **1a** and bromoalkyne **4** [CuSO₄·5H₂O, 1,10-phenanthroline, K₃PO₄, toluene, 60 °C] afforded the disubstituted ynamide **5** (99%). The latter was reduced to the (*Z*)-allylic alcohol **7** by conversion to an $(\eta^2$ -alkyne)Ti(II) complex followed by hydrolysis and subsequent deprotection with TBAF (59%, two steps from **5**). On the other hand, deprotection of the hydroxyl group in


Table 1. Synthesis of 3-aza-Allylic Alcohols of Type C

1	R	$(E)/(Z)^a$	2	yield $(\%)^b$	3	yield (%)
1a	Bn	92:8	2a	91	3a	95
1b	$CH_2CH(OMe)_2$	87:13	2b	69	3b	99
1c	$(CH_2)_2CH=CH_2$	82:18	2c	82	3c	94
1d	$CH_2CH=CH_2$	88:12	2d	84	3d	99
1e	PMB	90:10	2e	90	3e	93
1f	PMP	70:30	2f	55	3f	84

^a Determined by ¹H NMR and/or GC-MS. ^b Isolated yield of the (E) isomer.

ynamide **5** afforded the propargylic alcohol **6** which could be stereoselectively reduced (Red-Al, THF, rt) to the corresponding (*E*)-allylic alcohol **3a** (68%, two steps from **5**) (Scheme 2).

Scheme 2. Stereoselective Synthesis of 3-aza-Allylic Alcohols

The 3-aza-substituted allylic alcohols had to then be converted to allylic ethers of type **B**, required as substrates for the [2,3]-Wittig rearrangement, and derivatives bearing a carbonyl amide group were first considered.¹² Thus, alcohols **3a**–**f** were alkylated with *N*-(bromoacetyl)pyrrolidine **8** under phase-transfer catalysis (35% aq NaOH/toluene, cat. *n*-Bu₄NHSO₄) to provide amides **9a**–**f** in good yields (85–99%) (Table 2).

Metalation of amides 9a-f was achieved by treatement with LiHMDS (1.5–2 equiv, THF, -40 °C to 0 °C; method A), and subsequent [2,3]-Wittig rearrangement took place to afford mixtures of the corresponding diastereomeric *syn*-and *anti-* α -hydroxy- β -amino amides 10a-f and 11a-f, respectively, with low to good diastereoselectivities (*syn/anti* = 2:1 to 10:1). ¹³ To improve these results, the effect of additives was investigated. Addition of the polar cosolvent

3246 Org. Lett., Vol. 9, No. 17, 2007

^{(7) (}a) Frauenrath, H. In *Houben-Weyl (Methods of Organic Chemistry)*, *Stereoselective Synthesis*; Helmchen, G.; Hoffmann, R. W., Mulzer, J., Schaumann, E., Thieme Verlag: Stuttgart, 1995; Vol. E21d, pp 3301—3756. (b) Nakai, T.; Mikami, K. *Chem. Rev.* **1986**, 86, 885—902. (c) Marshall, J. A. In *Comprehensive Organic Synthesis*; Trost, B. M., Fleming, I., Eds.; Pergamon: London, 1991; Vol. 3, pp 975—908.

⁽⁸⁾ Nakai; E.; Nakai, T. Tetrahedron Lett. 1988, 29, 5409-5412.

⁽⁹⁾ Lee, E.; Kang, T. S.; Joo, B. J.; Tae, J. S.; Li, K. S.; Chung, C. K. *Tetrahedron Lett.* **1995**, *36*, 417–420.

⁽¹⁰⁾ Zhang, Y.; Hsung, R. P.; Tracey, M. R.; Kurtz, K. C. M.; Vera, E. L. Org. Lett. 2004, 6, 1151–1154.

^{(11) (}a) Tanaka, R.; Hirano, S.; Urabe, H.; Sato, F. *Org. Lett.* **2003**, *5*, 67–70. (b) (η^2 -ynamide)Ti(II) complexes also react with aldehydes to afford 3-aza-allylic alcohols having a trisubstituted double bond: Hirano, S.; Tanaka, R.; Urabe, H.; Sato, F. *Org. Lett.* **2004**, *6*, 727–729.

⁽¹²⁾ Mikami, K.; Takahashi, O.; Kasuga, T.; Nakai, T. Chem. Lett. 1985, 1729—1732.

Table 2. Synthesis of Amides 9

3	R	9	yield (%)
3a	Bn	9a	96
3b	$\mathrm{CH_2CH}(\mathrm{OMe})_2$	9b	97
3c	$(CH_2)_2CH=CH_2$	9c	99
3d	$CH_2CH=CH_2$	9d	85
3e	PMB	9e	86
3f	PMP	9f	97

HMPA (4 equiv) enabled us to achieve the deprotonation of amides $9\mathbf{a} - \mathbf{f}$ at a lower temperature (LiHMDS, THF, -78 °C; method B), and under these conditions, subsequent [2,3]-Wittig rearrangements occurred with a dramatic improvement of the diastereoselectivity (syn/anti = 9:1 to >24:1) (Table 3).

Table 3. [2,3]-Wittig Rearrangements of Amides 9

		method A		method B	
	R	syn/anti (10/11)	yield (%)	syn/anti (10/11)	yield (%)
9a	Bn	7:1	73	>24:1	77
9b	$CH_2CH(OMe)_2$	3:1	61	19:1	64
9c	$(CH_2)_2CH=CH_2$	6:1	60	>24:1	71
9d	$CH_2CH=CH_2$	10:1	58	>24:1	75
9e	PMB	6:1	66	>24:1	49
9f	PMP	2:1	55	9:1	52

Attempts to achieve the rearrangements of amides of type **B** synthesized from 3-aza-allylic alcohols of (Z) configuration, which may have potentially reverted the diastereoselectivity in favor of the anti- α -hydroxy- β -amino amides **11**, have not yet been successful. ¹⁴ Thus, with the aim of getting access to 1,2-anti-aminoalcohols by [2,3]-Wittig rearrangements of derivatives of (E)-3-aza-allylic alcohols, the remaining option was to replace the π -acceptor amide group by a stabilizing π -donor alkynyl substituent.

To prepare propargylic ethers from the alcohols $3\mathbf{a} - \mathbf{e}$, a two-step procedure involving alkylation with propargyl bromide under phase-transfer catalysis followed by silylation of the terminal alkyne moiety (n-BuLi, THF, -78 °C) was initially used (method C, Table 4). Under these conditions, alcohols $3\mathbf{a}$ and $3\mathbf{b}$ were efficiently converted to ethers $12\mathbf{a}$ (67%) and $12\mathbf{b}$ (91%), respectively, but $12\mathbf{c}$ was obtained in low yield (31%) from $3\mathbf{c}$. A one-step propargylation protocol of alcohols $3\mathbf{c} - \mathbf{e}$ (method D, Table 4) was therefore developed under phase transfer conditions with the propargylic bromide 13, bearing a TIPS group, and the propargylic ethers $14\mathbf{c} - \mathbf{e}$ were thus obtained in high yields (86-91%) (Table 4).

 Table 4.
 Synthesis of the Propargylic Ethers 12 and 14

	Method C		
Ts 2)	cat. n-Bu ₄ NHSO ₄ Br 35% aq NaOH, toluene n-BuLi, TMSCI, THF, –78 °C		R'
R [/] 1 OH	Br Method D == TIPS 13	R	
3	cat. n-Bu ₄ NHSO ₄	12	R' = TMS
	35% ag NaOH, toluene	14	R' = TIPS

3	R	method	R'	12/14	yield (%)
3a	Bn	С	TMS	12a	67
3b	$CH_2CH(OMe)_2$	\mathbf{C}	TMS	12b	84
3c	$(CH_2)_2CH=CH_2$	\mathbf{C}	TMS	12c	31
		D	TIPS	14c	86
3d	$CH_2CH=CH_2$	D	TIPS	14d	89
3e	PMB	D	TIPS	14e	91

Despite the presence of other potential acidic hydrogens in substrates $12\mathbf{a} - \mathbf{c}$ and $14\mathbf{c} - \mathbf{e}$, metalation at the propargylic position was successfully achieved by treatment with LDA (THF, -78 °C), and subsequent [2,3]-Wittig rearrangements proceeded cleanly to afford the corresponding 1,2-aminoal-cohols $15\mathbf{a} - \mathbf{c}$ and $16\mathbf{c} - \mathbf{e}$ in good yields (74–93%) and with high 1,2-anti diastereoselectivity (anti/syn = 11:1 to > 24:1). It is interesting that the propargylic ethers $14\mathbf{c} - \mathbf{e}$ substituted by a TIPS group are not only easier to synthesize but also also underwent [2,3]-Wittig rearrangements with higher diastereoselectivities (dr > 24:1) (Table 5). 16

Additionally, it is also noteworthy that the rearrangement of propargylic ethers derived from (E)-3-aza-allylic alcohols can also provide access to anti- α -hydroxy- β -amino methyl ketones of type **A** (R'' = Me). Indeed, the triple bond in compound **15a** can undergo hydration (cat. HgSO₄, cat. H₂SO₄, THF/H₂O, rt) to afford ketone **17** (86%) without epimerization (Scheme 3).

The stereochemical outcome observed in the [2,3]-rearrangement of the amides and the propargylic ethers derived from 3-aza-allylic alcohols is in perfect agreement with the

Org. Lett., Vol. 9, No. 17, 2007

⁽¹³⁾ The relative configurations of **10a**, **11a**, and **10f** were unambiguously ascertained by chemical correlations; see Supporting Information. The relative configuration of the other compounds **10b**-**e** was assigned by analogy

⁽¹⁴⁾ The [2,3]-Wittig rearrangement of the pyrrolidine amide derived from the (Z)-allylic alcohol 7 failed and resulted in extensive decomposition. Enolization of this substrate appears to be considerably more difficult to achieve, probably for steric reasons.

⁽¹⁵⁾ For this substrate, metalation of the aromatic group also took place as a side reaction during the second stage of method C.

⁽¹⁶⁾ The relative configuration of **15a** was unambiguously ascertained by a chemical correlation, and those of **15b,c** were assumed to be similar. Desilylation of **15c** and **16c** (TBAF, THF) led to the same 1,2-aminoalcohol indicating that the nature of the silicon substituent on the alkyne does not affect the stereochemical outcome; see Supporting Information.

Table 5. [2,3]-Wittig Rearrangements of Propargylic Ethers

12/14	R	R'	15/16	anti/syn	yield (%)
12a	Bn	TMS	15a	13:1	89
12b	$CH_2CH(OMe)_2$	TMS	15b	23:1	81
12c	$(CH_2)_2CH=CH_2$	TMS	15c	11:1	74
14c	$(CH_2)_2CH=CH_2$	TIPS	16c	>24:1	76
14d	$CH_2CH=CH_2$	TIPS	16d	>24:1	79
14e	PMB	TIPS	16e	>24:1	93

transition state model used to rationalize the diastereoselectivities of the rearrangement of nonheterosubstituted alcohol derivatives. In this five-membered ring transition state model

Scheme 3. Hydration of Alkyne 15a

of envelope conformation, the π -donating stabilizing alkynyl group (of small steric demand) tends to occupy an exo orientation, whereas an endo orientation is favored for the π -acceptor amide moiety due to secondary orbital or electrostatic interactions with the negatively charged olefinic moiety (Scheme 4).¹⁷

Scheme 4. [2,3]-Wittig Rearrangements of the Derivatives of 3-aza-Allylic Alcohols of Type C

We have reported the first examples of [2,3]-Wittig rearrangements of acyclic 3-aza-substituted allylic alcohol derivatives that proceed with synthetically useful levels of 1,2-diastereoselectivity. Further work is currently underway to explore the scope of such [2,3]-Wittig rearrangements and in particular to control the absolute configuration of the newly formed heterosubstituted stereocenters by the use of a chirality transfer from secondary 3-aza-allylic alcohols.

Acknowledgment. Financial support from Glaxo-Smith-Kline and the CNRS (BDI grant to M.B.) is gratefully acknowledged.

Supporting Information Available: Experimental procedures, analytical data for all new compounds, evidence for stereochemical assignments, and copies of the ¹H and ¹³C NMR spectra. This material is available free of charge via the Internet at http://pubs.acs.org.

OL0711725

3248 Org. Lett., Vol. 9, No. 17, 2007

^{(17) (}a) Wu, Y.-D.; Houk, K. N.; Marshall, J. A. *J. Org. Chem.* **1990**, *55*, 1421–1423. (b) Mikami, K.; Uchida, T.; Hirano, T.; Wu, Y.-D.; Houk, K. N. *Tetrahedron* **1994**, *50*, 5917–5926.